\(\int \frac {d+e x}{(a+b x^2+c x^4)^3} \, dx\) [52]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 474 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=-\frac {e \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {3 c e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {d x \left (\left (b^2-7 a c\right ) \left (3 b^2-4 a c\right )+3 b c \left (b^2-8 a c\right ) x^2\right )}{8 a^2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {3 \sqrt {c} \left (b^4-10 a b^2 c+56 a^2 c^2+b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {3 \sqrt {c} \left (b^3-8 a b c-\frac {b^4-10 a b^2 c+56 a^2 c^2}{\sqrt {b^2-4 a c}}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^2 \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {6 c^2 e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}} \]

[Out]

-1/4*e*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^2+1/4*d*x*(b*c*x^2-2*a*c+b^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^2
+3/2*c*e*(2*c*x^2+b)/(-4*a*c+b^2)^2/(c*x^4+b*x^2+a)+1/8*d*x*((-7*a*c+b^2)*(-4*a*c+3*b^2)+3*b*c*(-8*a*c+b^2)*x^
2)/a^2/(-4*a*c+b^2)^2/(c*x^4+b*x^2+a)-6*c^2*e*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(5/2)+3/16*
d*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b^4-10*a*b^2*c+56*a^2*c^2+b*(-8*a*c+b^2)*(-4
*a*c+b^2)^(1/2))/a^2/(-4*a*c+b^2)^(5/2)*2^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)+3/16*d*arctan(x*2^(1/2)*c^(1/2)/(
b+(-4*a*c+b^2)^(1/2))^(1/2))*c^(1/2)*(b^3-8*a*b*c+(-56*a^2*c^2+10*a*b^2*c-b^4)/(-4*a*c+b^2)^(1/2))/a^2/(-4*a*c
+b^2)^2*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 1.44 (sec) , antiderivative size = 474, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1687, 12, 1106, 1192, 1180, 211, 1121, 628, 632, 212} \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {3 \sqrt {c} d \left (56 a^2 c^2-10 a b^2 c+b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}+b^4\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}+\frac {3 \sqrt {c} d \left (-\frac {56 a^2 c^2-10 a b^2 c+b^4}{\sqrt {b^2-4 a c}}-8 a b c+b^3\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^2 \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {d x \left (3 b c x^2 \left (b^2-8 a c\right )+\left (b^2-7 a c\right ) \left (3 b^2-4 a c\right )\right )}{8 a^2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac {6 c^2 e \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}}+\frac {d x \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {3 c e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac {e \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2} \]

[In]

Int[(d + e*x)/(a + b*x^2 + c*x^4)^3,x]

[Out]

-1/4*(e*(b + 2*c*x^2))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) + (d*x*(b^2 - 2*a*c + b*c*x^2))/(4*a*(b^2 - 4*a*c
)*(a + b*x^2 + c*x^4)^2) + (3*c*e*(b + 2*c*x^2))/(2*(b^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)) + (d*x*((b^2 - 7*a*c)
*(3*b^2 - 4*a*c) + 3*b*c*(b^2 - 8*a*c)*x^2))/(8*a^2*(b^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)) + (3*Sqrt[c]*(b^4 - 1
0*a*b^2*c + 56*a^2*c^2 + b*(b^2 - 8*a*c)*Sqrt[b^2 - 4*a*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4
*a*c]]])/(8*Sqrt[2]*a^2*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[c]*(b^3 - 8*a*b*c - (b^4 -
10*a*b^2*c + 56*a^2*c^2)/Sqrt[b^2 - 4*a*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(8*Sqrt
[2]*a^2*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]) - (6*c^2*e*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2
 - 4*a*c)^(5/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1
)*(b^2 - 4*a*c))), x] - Dist[2*c*((2*p + 3)/((p + 1)*(b^2 - 4*a*c))), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1106

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 - 2*a*c + b*c*x^2)*((a + b*x^2 + c*
x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)*(b^2 - 4*a*c)), Int[(b^2 - 2*a*c + 2*(p +
1)*(b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 -
4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1121

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1192

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(a*b*e - d*(b^2 - 2*a
*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1687

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps \begin{align*} \text {integral}& = \int \frac {d}{\left (a+b x^2+c x^4\right )^3} \, dx+\int \frac {e x}{\left (a+b x^2+c x^4\right )^3} \, dx \\ & = d \int \frac {1}{\left (a+b x^2+c x^4\right )^3} \, dx+e \int \frac {x}{\left (a+b x^2+c x^4\right )^3} \, dx \\ & = \frac {d x \left (b^2-2 a c+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac {d \int \frac {b^2-2 a c-4 \left (b^2-4 a c\right )-5 b c x^2}{\left (a+b x^2+c x^4\right )^2} \, dx}{4 a \left (b^2-4 a c\right )}+\frac {1}{2} e \text {Subst}\left (\int \frac {1}{\left (a+b x+c x^2\right )^3} \, dx,x,x^2\right ) \\ & = -\frac {e \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {d x \left (\left (b^2-7 a c\right ) \left (3 b^2-4 a c\right )+3 b c \left (b^2-8 a c\right ) x^2\right )}{8 a^2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {d \int \frac {3 \left (b^4-9 a b^2 c+28 a^2 c^2\right )+3 b c \left (b^2-8 a c\right ) x^2}{a+b x^2+c x^4} \, dx}{8 a^2 \left (b^2-4 a c\right )^2}-\frac {(3 c e) \text {Subst}\left (\int \frac {1}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right )}{2 \left (b^2-4 a c\right )} \\ & = -\frac {e \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {3 c e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {d x \left (\left (b^2-7 a c\right ) \left (3 b^2-4 a c\right )+3 b c \left (b^2-8 a c\right ) x^2\right )}{8 a^2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac {\left (3 c \left (b^4-10 a b^2 c+56 a^2 c^2-b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}\right ) d\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{16 a^2 \left (b^2-4 a c\right )^{5/2}}+\frac {\left (3 c \left (b^4-10 a b^2 c+56 a^2 c^2+b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}\right ) d\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{16 a^2 \left (b^2-4 a c\right )^{5/2}}+\frac {\left (3 c^2 e\right ) \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{\left (b^2-4 a c\right )^2} \\ & = -\frac {e \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {3 c e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {d x \left (\left (b^2-7 a c\right ) \left (3 b^2-4 a c\right )+3 b c \left (b^2-8 a c\right ) x^2\right )}{8 a^2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {3 \sqrt {c} \left (b^4-10 a b^2 c+56 a^2 c^2+b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {3 \sqrt {c} \left (b^4-10 a b^2 c+56 a^2 c^2-b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {\left (6 c^2 e\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{\left (b^2-4 a c\right )^2} \\ & = -\frac {e \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {d x \left (b^2-2 a c+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {3 c e \left (b+2 c x^2\right )}{2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {d x \left (\left (b^2-7 a c\right ) \left (3 b^2-4 a c\right )+3 b c \left (b^2-8 a c\right ) x^2\right )}{8 a^2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {3 \sqrt {c} \left (b^4-10 a b^2 c+56 a^2 c^2+b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {3 \sqrt {c} \left (b^4-10 a b^2 c+56 a^2 c^2-b \left (b^2-8 a c\right ) \sqrt {b^2-4 a c}\right ) d \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{8 \sqrt {2} a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}}}-\frac {6 c^2 e \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.14 (sec) , antiderivative size = 488, normalized size of antiderivative = 1.03 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=\frac {1}{16} \left (\frac {4 a b e+8 a c x (d+e x)-4 b d x \left (b+c x^2\right )}{a \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac {6 b^3 d x \left (b+c x^2\right )-2 a b c d x \left (25 b+24 c x^2\right )+8 a^2 c (3 b e+c x (7 d+6 e x))}{a^2 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac {3 \sqrt {2} \sqrt {c} \left (b^4-10 a b^2 c+56 a^2 c^2+b^3 \sqrt {b^2-4 a c}-8 a b c \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {3 \sqrt {2} \sqrt {c} \left (b^4-10 a b^2 c+56 a^2 c^2-b^3 \sqrt {b^2-4 a c}+8 a b c \sqrt {b^2-4 a c}\right ) d \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{a^2 \left (b^2-4 a c\right )^{5/2} \sqrt {b+\sqrt {b^2-4 a c}}}+\frac {48 c^2 e \log \left (-b+\sqrt {b^2-4 a c}-2 c x^2\right )}{\left (b^2-4 a c\right )^{5/2}}-\frac {48 c^2 e \log \left (b+\sqrt {b^2-4 a c}+2 c x^2\right )}{\left (b^2-4 a c\right )^{5/2}}\right ) \]

[In]

Integrate[(d + e*x)/(a + b*x^2 + c*x^4)^3,x]

[Out]

((4*a*b*e + 8*a*c*x*(d + e*x) - 4*b*d*x*(b + c*x^2))/(a*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)^2) + (6*b^3*d*x*(b
+ c*x^2) - 2*a*b*c*d*x*(25*b + 24*c*x^2) + 8*a^2*c*(3*b*e + c*x*(7*d + 6*e*x)))/(a^2*(b^2 - 4*a*c)^2*(a + b*x^
2 + c*x^4)) + (3*Sqrt[2]*Sqrt[c]*(b^4 - 10*a*b^2*c + 56*a^2*c^2 + b^3*Sqrt[b^2 - 4*a*c] - 8*a*b*c*Sqrt[b^2 - 4
*a*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(a^2*(b^2 - 4*a*c)^(5/2)*Sqrt[b - Sqrt[b^2 -
 4*a*c]]) - (3*Sqrt[2]*Sqrt[c]*(b^4 - 10*a*b^2*c + 56*a^2*c^2 - b^3*Sqrt[b^2 - 4*a*c] + 8*a*b*c*Sqrt[b^2 - 4*a
*c])*d*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(a^2*(b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4
*a*c]]) + (48*c^2*e*Log[-b + Sqrt[b^2 - 4*a*c] - 2*c*x^2])/(b^2 - 4*a*c)^(5/2) - (48*c^2*e*Log[b + Sqrt[b^2 -
4*a*c] + 2*c*x^2])/(b^2 - 4*a*c)^(5/2))/16

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.53 (sec) , antiderivative size = 499, normalized size of antiderivative = 1.05

method result size
risch \(\frac {-\frac {3 b \,c^{2} d \left (8 a c -b^{2}\right ) x^{7}}{8 a^{2} \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {3 c^{3} e \,x^{6}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {c d \left (28 a^{2} c^{2}-49 a \,b^{2} c +6 b^{4}\right ) x^{5}}{8 a^{2} \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {9 b \,c^{2} e \,x^{4}}{2 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}-\frac {b d \left (4 a^{2} c^{2}+20 a \,b^{2} c -3 b^{4}\right ) x^{3}}{8 a^{2} \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {\left (5 a c +b^{2}\right ) c e \,x^{2}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {d \left (44 a^{2} c^{2}-37 a \,b^{2} c +5 b^{4}\right ) x}{8 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) a}+\frac {b \left (10 a c -b^{2}\right ) e}{64 a^{2} c^{2}-32 a \,b^{2} c +4 b^{4}}}{\left (c \,x^{4}+b \,x^{2}+a \right )^{2}}+\frac {3 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\frac {b c d \left (8 a c -b^{2}\right ) \textit {\_R}^{2}}{a^{2} \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}+\frac {16 c^{2} e \textit {\_R}}{16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}}+\frac {d \left (28 a^{2} c^{2}-9 a \,b^{2} c +b^{4}\right )}{a^{2} \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right )}\right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}\right )}{16}\) \(499\)
default \(64 c^{3} \left (\frac {\frac {-\frac {3 \left (24 a^{2} c^{2} \sqrt {-4 a c +b^{2}}-10 a \,b^{2} c \sqrt {-4 a c +b^{2}}+b^{4} \sqrt {-4 a c +b^{2}}+32 a^{2} b \,c^{2}-12 a \,b^{3} c +b^{5}\right ) d \,x^{3}}{64 a^{2} c^{3}}+\frac {3 e \left (4 a c -b^{2}\right ) x^{2}}{8 c^{2}}-\frac {d \left (-20 \sqrt {-4 a c +b^{2}}\, a b c +5 \sqrt {-4 a c +b^{2}}\, b^{3}+176 a^{2} c^{2}-64 a \,b^{2} c +5 b^{4}\right ) x}{64 a \,c^{3}}+\frac {e \left (-16 a c \sqrt {-4 a c +b^{2}}+4 b^{2} \sqrt {-4 a c +b^{2}}+12 a b c -3 b^{3}\right )}{16 c^{3}}}{\left (x^{2}+\frac {b}{2 c}-\frac {\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}}+\frac {-\frac {3 \sqrt {-4 a c +b^{2}}\, a^{2} c e \ln \left (-2 c \,x^{2}+\sqrt {-4 a c +b^{2}}-b \right )}{4}+\frac {3 \left (56 \sqrt {-4 a c +b^{2}}\, a^{2} c^{2} d -10 \sqrt {-4 a c +b^{2}}\, a \,b^{2} c d +\sqrt {-4 a c +b^{2}}\, b^{4} d +32 a^{2} b \,c^{2} d -12 a \,b^{3} c d +b^{5} d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{64 \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}}{a^{2} c^{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) \left (4 a c -b^{2}\right )}+\frac {\frac {-\frac {3 \left (-24 a^{2} c^{2} \sqrt {-4 a c +b^{2}}+10 a \,b^{2} c \sqrt {-4 a c +b^{2}}-b^{4} \sqrt {-4 a c +b^{2}}+32 a^{2} b \,c^{2}-12 a \,b^{3} c +b^{5}\right ) d \,x^{3}}{64 a^{2} c^{3}}+\frac {3 e \left (4 a c -b^{2}\right ) x^{2}}{8 c^{2}}-\frac {d \left (20 \sqrt {-4 a c +b^{2}}\, a b c -5 \sqrt {-4 a c +b^{2}}\, b^{3}+176 a^{2} c^{2}-64 a \,b^{2} c +5 b^{4}\right ) x}{64 a \,c^{3}}+\frac {e \left (16 a c \sqrt {-4 a c +b^{2}}-4 b^{2} \sqrt {-4 a c +b^{2}}+12 a b c -3 b^{3}\right )}{16 c^{3}}}{\left (x^{2}+\frac {\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}\right )^{2}}+\frac {\frac {3 \sqrt {-4 a c +b^{2}}\, a^{2} c e \ln \left (2 c \,x^{2}+\sqrt {-4 a c +b^{2}}+b \right )}{4}+\frac {3 \left (56 \sqrt {-4 a c +b^{2}}\, a^{2} c^{2} d -10 \sqrt {-4 a c +b^{2}}\, a \,b^{2} c d +\sqrt {-4 a c +b^{2}}\, b^{4} d -32 a^{2} b \,c^{2} d +12 a \,b^{3} c d -b^{5} d \right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{64 \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}}{a^{2} c^{2}}}{16 \left (16 a^{2} c^{2}-8 a \,b^{2} c +b^{4}\right ) \left (4 a c -b^{2}\right )}\right )\) \(889\)

[In]

int((e*x+d)/(c*x^4+b*x^2+a)^3,x,method=_RETURNVERBOSE)

[Out]

(-3/8*b*c^2*d*(8*a*c-b^2)/a^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^7+3*c^3*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^6+1/8/a^2*c*
d*(28*a^2*c^2-49*a*b^2*c+6*b^4)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5+9/2*b*c^2*e/(16*a^2*c^2-8*a*b^2*c+b^4)*x^4-1/8*
b*d*(4*a^2*c^2+20*a*b^2*c-3*b^4)/a^2/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3+(5*a*c+b^2)*c*e/(16*a^2*c^2-8*a*b^2*c+b^4)
*x^2+1/8*d*(44*a^2*c^2-37*a*b^2*c+5*b^4)/(16*a^2*c^2-8*a*b^2*c+b^4)/a*x+1/4*b*(10*a*c-b^2)*e/(16*a^2*c^2-8*a*b
^2*c+b^4))/(c*x^4+b*x^2+a)^2+3/16*sum((-b*c*d*(8*a*c-b^2)/a^2/(16*a^2*c^2-8*a*b^2*c+b^4)*_R^2+16*c^2*e/(16*a^2
*c^2-8*a*b^2*c+b^4)*_R+d*(28*a^2*c^2-9*a*b^2*c+b^4)/a^2/(16*a^2*c^2-8*a*b^2*c+b^4))/(2*_R^3*c+_R*b)*ln(x-_R),_
R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [F(-1)]

Timed out. \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)/(c*x**4+b*x**2+a)**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=\int { \frac {e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{3}} \,d x } \]

[In]

integrate((e*x+d)/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")

[Out]

1/8*(24*a^2*c^3*e*x^6 + 36*a^2*b*c^2*e*x^4 + 3*(b^3*c^2 - 8*a*b*c^3)*d*x^7 + (6*b^4*c - 49*a*b^2*c^2 + 28*a^2*
c^3)*d*x^5 + (3*b^5 - 20*a*b^3*c - 4*a^2*b*c^2)*d*x^3 + 8*(a^2*b^2*c + 5*a^3*c^2)*e*x^2 + (5*a*b^4 - 37*a^2*b^
2*c + 44*a^3*c^2)*d*x - 2*(a^2*b^3 - 10*a^3*b*c)*e)/((a^2*b^4*c^2 - 8*a^3*b^2*c^3 + 16*a^4*c^4)*x^8 + a^4*b^4
- 8*a^5*b^2*c + 16*a^6*c^2 + 2*(a^2*b^5*c - 8*a^3*b^3*c^2 + 16*a^4*b*c^3)*x^6 + (a^2*b^6 - 6*a^3*b^4*c + 32*a^
5*c^3)*x^4 + 2*(a^3*b^5 - 8*a^4*b^3*c + 16*a^5*b*c^2)*x^2) - 3/8*integrate(-(16*a^2*c^2*e*x + (b^3*c - 8*a*b*c
^2)*d*x^2 + (b^4 - 9*a*b^2*c + 28*a^2*c^2)*d)/(c*x^4 + b*x^2 + a), x)/(a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3389 vs. \(2 (420) = 840\).

Time = 3.11 (sec) , antiderivative size = 3389, normalized size of antiderivative = 7.15 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)/(c*x^4+b*x^2+a)^3,x, algorithm="giac")

[Out]

3/32*(sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^8 - 17*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^6*c - 2*sqr
t(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^7*c - 2*b^8*c + 116*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^4*c^2
 + 26*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c^2 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^6*c^2 + 34
*a*b^6*c^2 + 2*b^7*c^2 - 368*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^3 - 128*sqrt(2)*sqrt(b*c + sqrt
(b^2 - 4*a*c)*c)*a^2*b^3*c^3 - 13*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^3 - 232*a^2*b^4*c^3 - 30*a*b
^5*c^3 + 448*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^4*c^4 + 224*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3
*b*c^4 + 64*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^4 + 736*a^3*b^2*c^4 + 176*a^2*b^3*c^4 - 112*sqrt
(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^5 - 896*a^4*c^5 - 352*a^3*b*c^5 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
 + sqrt(b^2 - 4*a*c)*c)*b^7 + 15*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^5*c + 2*sqrt(2)
*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^6*c - 88*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 -
4*a*c)*c)*a^2*b^3*c^2 - 22*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - sqrt(2)*sqrt(
b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5*c^2 + 176*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a
*c)*c)*a^3*b*c^3 + 88*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 + 11*sqrt(2)*sqrt(
b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 - 44*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*
a*c)*c)*a^2*b*c^4 + 2*(b^2 - 4*a*c)*b^6*c - 26*(b^2 - 4*a*c)*a*b^4*c^2 - 2*(b^2 - 4*a*c)*b^5*c^2 + 128*(b^2 -
4*a*c)*a^2*b^2*c^3 + 22*(b^2 - 4*a*c)*a*b^3*c^3 - 224*(b^2 - 4*a*c)*a^3*c^4 - 88*(b^2 - 4*a*c)*a^2*b*c^4)*d*ar
ctan(2*sqrt(1/2)*x/sqrt((a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 + sqrt((a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)^2
- 4*(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*(a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3)))/(a^2*b^4*c - 8*a^3*b^2*c^2
 + 16*a^4*c^3)))/((a^3*b^8 - 16*a^4*b^6*c - 2*a^3*b^7*c + 96*a^5*b^4*c^2 + 24*a^4*b^5*c^2 + a^3*b^6*c^2 - 256*
a^6*b^2*c^3 - 96*a^5*b^3*c^3 - 12*a^4*b^4*c^3 + 256*a^7*c^4 + 128*a^6*b*c^4 + 48*a^5*b^2*c^4 - 64*a^6*c^5)*abs
(c)) + 3/32*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^8 - 17*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^6*c
- 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^7*c + 2*b^8*c + 116*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*
b^4*c^2 + 26*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^5*c^2 + sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^6*c
^2 - 34*a*b^6*c^2 - 2*b^7*c^2 - 368*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*b^2*c^3 - 128*sqrt(2)*sqrt(b*c
 - sqrt(b^2 - 4*a*c)*c)*a^2*b^3*c^3 - 13*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^3 + 232*a^2*b^4*c^3 +
 30*a*b^5*c^3 + 448*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^4*c^4 + 224*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)
*c)*a^3*b*c^4 + 64*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^4 - 736*a^3*b^2*c^4 - 176*a^2*b^3*c^4 - 1
12*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^5 + 896*a^4*c^5 + 352*a^3*b*c^5 + sqrt(2)*sqrt(b^2 - 4*a*c)*s
qrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^7 - 15*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^5*c - 2*
sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^6*c + 88*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt
(b^2 - 4*a*c)*c)*a^2*b^3*c^2 + 22*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 + sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5*c^2 - 176*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^
2 - 4*a*c)*c)*a^3*b*c^3 - 88*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 11*sqrt(2
)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 44*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b
^2 - 4*a*c)*c)*a^2*b*c^4 - 2*(b^2 - 4*a*c)*b^6*c + 26*(b^2 - 4*a*c)*a*b^4*c^2 + 2*(b^2 - 4*a*c)*b^5*c^2 - 128*
(b^2 - 4*a*c)*a^2*b^2*c^3 - 22*(b^2 - 4*a*c)*a*b^3*c^3 + 224*(b^2 - 4*a*c)*a^3*c^4 + 88*(b^2 - 4*a*c)*a^2*b*c^
4)*d*arctan(2*sqrt(1/2)*x/sqrt((a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 - sqrt((a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*
c^2)^2 - 4*(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*(a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3)))/(a^2*b^4*c - 8*a^3*
b^2*c^2 + 16*a^4*c^3)))/((a^3*b^8 - 16*a^4*b^6*c - 2*a^3*b^7*c + 96*a^5*b^4*c^2 + 24*a^4*b^5*c^2 + a^3*b^6*c^2
 - 256*a^6*b^2*c^3 - 96*a^5*b^3*c^3 - 12*a^4*b^4*c^3 + 256*a^7*c^4 + 128*a^6*b*c^4 + 48*a^5*b^2*c^4 - 64*a^6*c
^5)*abs(c)) - 3*(b^2*c^4 - 4*a*c^5 - 2*b*c^5 + c^6)*sqrt(b^2 - 4*a*c)*e*log(x^2 + 1/2*(a^2*b^5 - 8*a^3*b^3*c +
 16*a^4*b*c^2 + sqrt((a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)^2 - 4*(a^3*b^4 - 8*a^4*b^2*c + 16*a^5*c^2)*(a^2*b^
4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3)))/(a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3))/((b^8 - 16*a*b^6*c - 2*b^7*c + 9
6*a^2*b^4*c^2 + 24*a*b^5*c^2 + b^6*c^2 - 256*a^3*b^2*c^3 - 96*a^2*b^3*c^3 - 12*a*b^4*c^3 + 256*a^4*c^4 + 128*a
^3*b*c^4 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*c^2) + 3*(b^2*c^4 - 4*a*c^5 - 2*b*c^5 + c^6)*sqrt(b^2 - 4*a*c)*e*log(x
^2 + 1/2*(a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2 - sqrt((a^2*b^5 - 8*a^3*b^3*c + 16*a^4*b*c^2)^2 - 4*(a^3*b^4 -
8*a^4*b^2*c + 16*a^5*c^2)*(a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3)))/(a^2*b^4*c - 8*a^3*b^2*c^2 + 16*a^4*c^3))
/((b^8 - 16*a*b^6*c - 2*b^7*c + 96*a^2*b^4*c^2 + 24*a*b^5*c^2 + b^6*c^2 - 256*a^3*b^2*c^3 - 96*a^2*b^3*c^3 - 1
2*a*b^4*c^3 + 256*a^4*c^4 + 128*a^3*b*c^4 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*c^2) + 1/8*(3*b^3*c^2*d*x^7 - 24*a*b*
c^3*d*x^7 + 24*a^2*c^3*e*x^6 + 6*b^4*c*d*x^5 - 49*a*b^2*c^2*d*x^5 + 28*a^2*c^3*d*x^5 + 36*a^2*b*c^2*e*x^4 + 3*
b^5*d*x^3 - 20*a*b^3*c*d*x^3 - 4*a^2*b*c^2*d*x^3 + 8*a^2*b^2*c*e*x^2 + 40*a^3*c^2*e*x^2 + 5*a*b^4*d*x - 37*a^2
*b^2*c*d*x + 44*a^3*c^2*d*x - 2*a^2*b^3*e + 20*a^3*b*c*e)/((a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2)*(c*x^4 + b*x^2
 + a)^2)

Mupad [B] (verification not implemented)

Time = 8.77 (sec) , antiderivative size = 4225, normalized size of antiderivative = 8.91 \[ \int \frac {d+e x}{\left (a+b x^2+c x^4\right )^3} \, dx=\text {Too large to display} \]

[In]

int((d + e*x)/(a + b*x^2 + c*x^4)^3,x)

[Out]

symsum(log(root(56371445760*a^11*b^8*c^6*z^4 - 503316480*a^8*b^14*c^3*z^4 + 47185920*a^7*b^16*c^2*z^4 - 171798
691840*a^14*b^2*c^9*z^4 + 193273528320*a^13*b^4*c^8*z^4 - 128849018880*a^12*b^6*c^7*z^4 - 16911433728*a^10*b^1
0*c^5*z^4 + 3523215360*a^9*b^12*c^4*z^4 - 2621440*a^6*b^18*c*z^4 + 68719476736*a^15*c^10*z^4 + 65536*a^5*b^20*
z^4 + 6936330240*a^8*b^3*c^8*d^2*z^2 + 2464874496*a^6*b^7*c^6*d^2*z^2 - 3963617280*a^9*b*c^9*d^2*z^2 - 1509949
440*a^9*b^2*c^8*e^2*z^2 - 5400428544*a^7*b^5*c^7*d^2*z^2 - 94464*a*b^17*c*d^2*z^2 + 754974720*a^8*b^4*c^7*e^2*
z^2 - 730054656*a^5*b^9*c^5*d^2*z^2 - 188743680*a^7*b^6*c^6*e^2*z^2 + 146165760*a^4*b^11*c^4*d^2*z^2 + 2359296
0*a^6*b^8*c^5*e^2*z^2 - 19860480*a^3*b^13*c^3*d^2*z^2 - 1179648*a^5*b^10*c^4*e^2*z^2 + 1771776*a^2*b^15*c^2*d^
2*z^2 + 1207959552*a^10*c^9*e^2*z^2 + 2304*b^19*d^2*z^2 - 428544*a*b^12*c^3*d^2*e*z + 1022754816*a^6*b^2*c^8*d
^2*e*z - 642318336*a^5*b^4*c^7*d^2*e*z + 223395840*a^4*b^6*c^6*d^2*e*z - 46725120*a^3*b^8*c^5*d^2*e*z + 593049
6*a^2*b^10*c^4*d^2*e*z - 693633024*a^7*c^9*d^2*e*z + 13824*b^14*c^2*d^2*e*z + 34836480*a^4*b*c^8*d^2*e^2 - 435
456*a*b^7*c^5*d^2*e^2 - 17418240*a^3*b^3*c^7*d^2*e^2 + 3919104*a^2*b^5*c^6*d^2*e^2 + 20736*b^9*c^4*d^2*e^2 - 2
7433728*a^3*b^2*c^8*d^4 + 6446304*a^2*b^4*c^7*d^4 - 734832*a*b^6*c^6*d^4 + 49787136*a^4*c^9*d^4 + 5308416*a^5*
c^8*e^4 + 35721*b^8*c^5*d^4, z, k)*(root(56371445760*a^11*b^8*c^6*z^4 - 503316480*a^8*b^14*c^3*z^4 + 47185920*
a^7*b^16*c^2*z^4 - 171798691840*a^14*b^2*c^9*z^4 + 193273528320*a^13*b^4*c^8*z^4 - 128849018880*a^12*b^6*c^7*z
^4 - 16911433728*a^10*b^10*c^5*z^4 + 3523215360*a^9*b^12*c^4*z^4 - 2621440*a^6*b^18*c*z^4 + 68719476736*a^15*c
^10*z^4 + 65536*a^5*b^20*z^4 + 6936330240*a^8*b^3*c^8*d^2*z^2 + 2464874496*a^6*b^7*c^6*d^2*z^2 - 3963617280*a^
9*b*c^9*d^2*z^2 - 1509949440*a^9*b^2*c^8*e^2*z^2 - 5400428544*a^7*b^5*c^7*d^2*z^2 - 94464*a*b^17*c*d^2*z^2 + 7
54974720*a^8*b^4*c^7*e^2*z^2 - 730054656*a^5*b^9*c^5*d^2*z^2 - 188743680*a^7*b^6*c^6*e^2*z^2 + 146165760*a^4*b
^11*c^4*d^2*z^2 + 23592960*a^6*b^8*c^5*e^2*z^2 - 19860480*a^3*b^13*c^3*d^2*z^2 - 1179648*a^5*b^10*c^4*e^2*z^2
+ 1771776*a^2*b^15*c^2*d^2*z^2 + 1207959552*a^10*c^9*e^2*z^2 + 2304*b^19*d^2*z^2 - 428544*a*b^12*c^3*d^2*e*z +
 1022754816*a^6*b^2*c^8*d^2*e*z - 642318336*a^5*b^4*c^7*d^2*e*z + 223395840*a^4*b^6*c^6*d^2*e*z - 46725120*a^3
*b^8*c^5*d^2*e*z + 5930496*a^2*b^10*c^4*d^2*e*z - 693633024*a^7*c^9*d^2*e*z + 13824*b^14*c^2*d^2*e*z + 3483648
0*a^4*b*c^8*d^2*e^2 - 435456*a*b^7*c^5*d^2*e^2 - 17418240*a^3*b^3*c^7*d^2*e^2 + 3919104*a^2*b^5*c^6*d^2*e^2 +
20736*b^9*c^4*d^2*e^2 - 27433728*a^3*b^2*c^8*d^4 + 6446304*a^2*b^4*c^7*d^4 - 734832*a*b^6*c^6*d^4 + 49787136*a
^4*c^9*d^4 + 5308416*a^5*c^8*e^4 + 35721*b^8*c^5*d^4, z, k)*((x*(786432*a^9*c^9*e - 768*a^4*b^10*c^4*e + 15360
*a^5*b^8*c^5*e - 122880*a^6*b^6*c^6*e + 491520*a^7*b^4*c^7*e - 983040*a^8*b^2*c^8*e))/(32*(a^4*b^12 + 4096*a^1
0*c^6 - 24*a^5*b^10*c + 240*a^6*b^8*c^2 - 1280*a^7*b^6*c^3 + 3840*a^8*b^4*c^4 - 6144*a^9*b^2*c^5)) - (3*(73400
32*a^9*c^9*d - 256*a^2*b^14*c^2*d + 7424*a^3*b^12*c^3*d - 94208*a^4*b^10*c^4*d + 675840*a^5*b^8*c^5*d - 294912
0*a^6*b^6*c^6*d + 7798784*a^7*b^4*c^7*d - 11534336*a^8*b^2*c^8*d))/(512*(a^4*b^12 + 4096*a^10*c^6 - 24*a^5*b^1
0*c + 240*a^6*b^8*c^2 - 1280*a^7*b^6*c^3 + 3840*a^8*b^4*c^4 - 6144*a^9*b^2*c^5)) + (root(56371445760*a^11*b^8*
c^6*z^4 - 503316480*a^8*b^14*c^3*z^4 + 47185920*a^7*b^16*c^2*z^4 - 171798691840*a^14*b^2*c^9*z^4 + 19327352832
0*a^13*b^4*c^8*z^4 - 128849018880*a^12*b^6*c^7*z^4 - 16911433728*a^10*b^10*c^5*z^4 + 3523215360*a^9*b^12*c^4*z
^4 - 2621440*a^6*b^18*c*z^4 + 68719476736*a^15*c^10*z^4 + 65536*a^5*b^20*z^4 + 6936330240*a^8*b^3*c^8*d^2*z^2
+ 2464874496*a^6*b^7*c^6*d^2*z^2 - 3963617280*a^9*b*c^9*d^2*z^2 - 1509949440*a^9*b^2*c^8*e^2*z^2 - 5400428544*
a^7*b^5*c^7*d^2*z^2 - 94464*a*b^17*c*d^2*z^2 + 754974720*a^8*b^4*c^7*e^2*z^2 - 730054656*a^5*b^9*c^5*d^2*z^2 -
 188743680*a^7*b^6*c^6*e^2*z^2 + 146165760*a^4*b^11*c^4*d^2*z^2 + 23592960*a^6*b^8*c^5*e^2*z^2 - 19860480*a^3*
b^13*c^3*d^2*z^2 - 1179648*a^5*b^10*c^4*e^2*z^2 + 1771776*a^2*b^15*c^2*d^2*z^2 + 1207959552*a^10*c^9*e^2*z^2 +
 2304*b^19*d^2*z^2 - 428544*a*b^12*c^3*d^2*e*z + 1022754816*a^6*b^2*c^8*d^2*e*z - 642318336*a^5*b^4*c^7*d^2*e*
z + 223395840*a^4*b^6*c^6*d^2*e*z - 46725120*a^3*b^8*c^5*d^2*e*z + 5930496*a^2*b^10*c^4*d^2*e*z - 693633024*a^
7*c^9*d^2*e*z + 13824*b^14*c^2*d^2*e*z + 34836480*a^4*b*c^8*d^2*e^2 - 435456*a*b^7*c^5*d^2*e^2 - 17418240*a^3*
b^3*c^7*d^2*e^2 + 3919104*a^2*b^5*c^6*d^2*e^2 + 20736*b^9*c^4*d^2*e^2 - 27433728*a^3*b^2*c^8*d^4 + 6446304*a^2
*b^4*c^7*d^4 - 734832*a*b^6*c^6*d^4 + 49787136*a^4*c^9*d^4 + 5308416*a^5*c^8*e^4 + 35721*b^8*c^5*d^4, z, k)*x*
(4194304*a^11*b*c^9 - 256*a^4*b^15*c^2 + 7168*a^5*b^13*c^3 - 86016*a^6*b^11*c^4 + 573440*a^7*b^9*c^5 - 2293760
*a^8*b^7*c^6 + 5505024*a^9*b^5*c^7 - 7340032*a^10*b^3*c^8))/(32*(a^4*b^12 + 4096*a^10*c^6 - 24*a^5*b^10*c + 24
0*a^6*b^8*c^2 - 1280*a^7*b^6*c^3 + 3840*a^8*b^4*c^4 - 6144*a^9*b^2*c^5))) + (3*(1081344*a^6*b*c^8*d*e + 1536*a
^2*b^9*c^4*d*e - 29184*a^3*b^7*c^5*d*e + 227328*a^4*b^5*c^6*d*e - 811008*a^5*b^3*c^7*d*e))/(512*(a^4*b^12 + 40
96*a^10*c^6 - 24*a^5*b^10*c + 240*a^6*b^8*c^2 - 1280*a^7*b^6*c^3 + 3840*a^8*b^4*c^4 - 6144*a^9*b^2*c^5)) - (x*
(225792*a^6*c^9*d^2 + 9*b^12*c^3*d^2 - 252*a*b^10*c^4*d^2 - 36864*a^6*b*c^8*e^2 + 3114*a^2*b^8*c^5*d^2 - 21312
*a^3*b^6*c^6*d^2 + 88128*a^4*b^4*c^7*d^2 - 211968*a^5*b^2*c^8*d^2 - 2304*a^4*b^5*c^6*e^2 + 18432*a^5*b^3*c^7*e
^2))/(32*(a^4*b^12 + 4096*a^10*c^6 - 24*a^5*b^10*c + 240*a^6*b^8*c^2 - 1280*a^7*b^6*c^3 + 3840*a^8*b^4*c^4 - 6
144*a^9*b^2*c^5))) + (3*(3456*a*b^5*c^6*d^3 - 189*b^7*c^5*d^3 + 56448*a^3*b*c^8*d^3 + 64512*a^4*c^8*d*e^2 - 22
608*a^2*b^3*c^7*d^3 + 2304*a^2*b^4*c^6*d*e^2 - 20736*a^3*b^2*c^7*d*e^2))/(512*(a^4*b^12 + 4096*a^10*c^6 - 24*a
^5*b^10*c + 240*a^6*b^8*c^2 - 1280*a^7*b^6*c^3 + 3840*a^8*b^4*c^4 - 6144*a^9*b^2*c^5)) + (x*(6912*a^4*c^8*e^3
- 27*b^7*c^5*d^2*e + 486*a*b^5*c^6*d^2*e + 12096*a^3*b*c^8*d^2*e - 3672*a^2*b^3*c^7*d^2*e))/(32*(a^4*b^12 + 40
96*a^10*c^6 - 24*a^5*b^10*c + 240*a^6*b^8*c^2 - 1280*a^7*b^6*c^3 + 3840*a^8*b^4*c^4 - 6144*a^9*b^2*c^5)))*root
(56371445760*a^11*b^8*c^6*z^4 - 503316480*a^8*b^14*c^3*z^4 + 47185920*a^7*b^16*c^2*z^4 - 171798691840*a^14*b^2
*c^9*z^4 + 193273528320*a^13*b^4*c^8*z^4 - 128849018880*a^12*b^6*c^7*z^4 - 16911433728*a^10*b^10*c^5*z^4 + 352
3215360*a^9*b^12*c^4*z^4 - 2621440*a^6*b^18*c*z^4 + 68719476736*a^15*c^10*z^4 + 65536*a^5*b^20*z^4 + 693633024
0*a^8*b^3*c^8*d^2*z^2 + 2464874496*a^6*b^7*c^6*d^2*z^2 - 3963617280*a^9*b*c^9*d^2*z^2 - 1509949440*a^9*b^2*c^8
*e^2*z^2 - 5400428544*a^7*b^5*c^7*d^2*z^2 - 94464*a*b^17*c*d^2*z^2 + 754974720*a^8*b^4*c^7*e^2*z^2 - 730054656
*a^5*b^9*c^5*d^2*z^2 - 188743680*a^7*b^6*c^6*e^2*z^2 + 146165760*a^4*b^11*c^4*d^2*z^2 + 23592960*a^6*b^8*c^5*e
^2*z^2 - 19860480*a^3*b^13*c^3*d^2*z^2 - 1179648*a^5*b^10*c^4*e^2*z^2 + 1771776*a^2*b^15*c^2*d^2*z^2 + 1207959
552*a^10*c^9*e^2*z^2 + 2304*b^19*d^2*z^2 - 428544*a*b^12*c^3*d^2*e*z + 1022754816*a^6*b^2*c^8*d^2*e*z - 642318
336*a^5*b^4*c^7*d^2*e*z + 223395840*a^4*b^6*c^6*d^2*e*z - 46725120*a^3*b^8*c^5*d^2*e*z + 5930496*a^2*b^10*c^4*
d^2*e*z - 693633024*a^7*c^9*d^2*e*z + 13824*b^14*c^2*d^2*e*z + 34836480*a^4*b*c^8*d^2*e^2 - 435456*a*b^7*c^5*d
^2*e^2 - 17418240*a^3*b^3*c^7*d^2*e^2 + 3919104*a^2*b^5*c^6*d^2*e^2 + 20736*b^9*c^4*d^2*e^2 - 27433728*a^3*b^2
*c^8*d^4 + 6446304*a^2*b^4*c^7*d^4 - 734832*a*b^6*c^6*d^4 + 49787136*a^4*c^9*d^4 + 5308416*a^5*c^8*e^4 + 35721
*b^8*c^5*d^4, z, k), k, 1, 4) + ((x^2*(5*a*c^2*e + b^2*c*e))/(b^4 + 16*a^2*c^2 - 8*a*b^2*c) - (b^3*e - 10*a*b*
c*e)/(4*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (3*c^3*e*x^6)/(b^4 + 16*a^2*c^2 - 8*a*b^2*c) + (9*b*c^2*e*x^4)/(2*(b
^4 + 16*a^2*c^2 - 8*a*b^2*c)) - (d*x^3*(4*a^2*b*c^2 - 3*b^5 + 20*a*b^3*c))/(8*a^2*(b^4 + 16*a^2*c^2 - 8*a*b^2*
c)) + (d*x*(5*b^4 + 44*a^2*c^2 - 37*a*b^2*c))/(8*a*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (d*x^5*(6*b^4*c + 28*a^2*
c^3 - 49*a*b^2*c^2))/(8*a^2*(b^4 + 16*a^2*c^2 - 8*a*b^2*c)) + (3*c*d*x^7*(b^3*c - 8*a*b*c^2))/(8*a^2*(b^4 + 16
*a^2*c^2 - 8*a*b^2*c)))/(x^4*(2*a*c + b^2) + a^2 + c^2*x^8 + 2*a*b*x^2 + 2*b*c*x^6)